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Weak turbulence and structure evolution in N-body Hamiltonian systems with long-range force
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The dynamics of a family of one-dimensional spatially periodic systems ofN classical particles interacting
by a repulsive pair force is investigated. This force is the long-range part of the one-dimensional Coulomb
interaction; the family includes the mean-field Hamiltonian rotator model. Initial conditions generating turbu-
lent structures are considered. These structures are density holes in (x,v) space that produce a non-Gaussian
probability distribution of fluctuations of the particle distribution functionf (x,v,t). These density holes appear
in a velocity domain wheref (x,v) has large derivative]v f as predicted by the kinetic theory of clumps in
plasmas. Their evolution is shown to be controlled by the motion of the particles in the (x,v) space domain
swept by the separatrix associated with the longest-range coupling field components, which implies that their
lifetime is proportional to the numberN of particles. The relaxation time of the velocity distribution function
of tagged particles in the system~for various initial conditions! is also shown to be quite insensitive to the
presence of turbulent structures and to spatial scales smaller than the Debye length.@S1063-651X~98!08905-3#

PACS number~s!: 05.45.1b, 64.60.Cn, 52.20.Dq, 52.35.Fp
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I. MOTIVATIONS

Systems of many particles interacting via two-body lon
range forces have peculiar equilibrium and nonequilibri
statistical mechanics@1,2#. The Coulomb system, which ha
been thoroughly investigated, combines the difficulties
long-range interaction with a short-range divergence —
in one dimension, with a discontinuity in the electric fiel
Recent numerical simulations@3–6# and theoretical argu
ments@7–10# indicate that the characteristics of Coulombi
plasma turbulence are shared by a family of systems
which only the smooth, long-range part of the Coulomb
teraction is considered. Such models are discussed in s
state and nuclear physics~see, e.g., Ref.@11# and references
therein!.

A proper understanding of the analogy and differen
between the systems with long-range pair interactions
quires more than a discussion of their equilibrium statisti
mechanics. The aim of the present paper is to show h
systems with long-range interactions behave similarly to
Coulomb one in the evolution of their (x,v)-space densities
Indeed non-wave-like fluctuations~phase-space granula
tions! are an important element of Vlasov turbulence
plasma physics~see, e.g., Refs.@13–17# and references
therein, and Ref.@18# for a review!. These granulations
~‘‘clumps’’ and ‘‘holes’’ ! are domains with an excess or
depletion of particles, on a length scale comparable with
Debye length and a velocity range of the order of a fract
of the thermal velocity. They last for long times compar
with the local rate of separation of trajectories@19# and may
be presented as nonequilibrium, nonlinear, robust s

*Electronic address: antoni@jollyjumper.mpipks-dresd
mpg.de

†Electronic address: elskens@newsup.univ-mrs.fr
571063-651X/98/57~5!/5347~11!/$15.00
-

f
r,

in
-
lid

s
e-
l
w
e

e
n

f-

organized structures@18,20#. Therefore, while the theoretica
basis on which they were analyzed is kinetic theory, th
should be considered as manifestations of the finitenes
the number of particles in the system, but the limitations
computer power precluded numerical investigations alo
this line so far.

It has been known for decades that the behavior of
(x,v) space density of particles interacting by a long ran
force like Coulomb’s is described in the limitN→` by the
Vlasov equation. Granularity effects have been compu
through the Balescu-Lenard equation. However, the typ
form of rigorous estimates on the growth of discrepanc
between kinetic-theoretical evolution and finite-N evolution
is exponential in time for smooth pair interaction@21,22#,
and the Vlasov-Poisson system in one space dimension
smooth initial conditions is able to generate in finite tim
singularities in the form of ‘‘particlelike’’~Dirac! concentra-
tions@23#. This prompts for a more direct study of such fini
N effects. The present paper aims to show that phase s
@(x,v) space# granulations also appear when the interparti
interaction is a smooth long-range one. In the latter case,
take advantage of the development of adapted nume
codes.

In Sec. II we present our family of models~with param-
eters), in which the interaction reduces to the Coulomb for
in the limit s→`. The cases51, or ‘‘mean fieldXY’’ or
rotator model, was introduced by Antoni and Ruffo@3,12#.
Larger values ofs correspond to a Coulomb interaction tru
cated to itss Fourier components with smallest wave numb
~i.e., longest range!. Codes and initial conditions are de
scribed in Sec. III.

In Sec. IV we characterize the relaxation of the distrib
tion of ‘‘tagged’’ particles~i.e., test particles in the system!
to the ambient distribution, starting from an equilibrium sta
as well as from a nonequilibrium initial condition. Turbule
structures generated by our simulations are characterize

.
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5348 57MICKAËL ANTONI, YVES ELSKENS, AND CAROLINE SANDOZ
Sec. V, where we compare the true one-dimensional~1D!
N-body dynamics of Coulomb interacting particles with t
kinetic approach@16# and withN-body dynamics of finite-s
interactions. The relaxation of the fields to equilibrium
which occurs on longer time scales than the turbulent mo
of Sec. V, is investigated in Sec. VI, and we propose a
namical description that may complement the kinetic
proach. The interaction between structures generated
similar initial conditions is presented in Sec. VII. Concl
sions are summarized in Sec. VIII.

II. HAMILTONIAN ROTATOR MODEL

Our system ofN identical classical particles is describe
by the Hamiltonian

H5K1V5(
r 51

N pr
2

2m
1

q2

2N (
n51

s8

(
l ,r 51

N

Vn cos@kn~xr2xl !#,

~1!

wherexrPR/L is the position of particler ~with massm and
chargeq) on the interval of lengthL with periodic boundary
conditions~i.e., the circleSL), pr is its conjugate momentum
andkn52pn/L. The Fourier coefficientsVn of the potential
are positive with finite sum@24#.

We are especially interested in the family

Vn5n22K8, 1<n<s8, n odd ~2!

and denote bys5(s811)/2 the number of nonvanishing co
efficients. In the limit s→1` with K85L/(p2e0).0,
model ~1! with coefficients~2! defines a one-dimensiona
Coulombian system@24#. The field generated by a par
icle at xj reads (K8q/N)(n851

` sin@k2n821(x2xj)#5(pK8q/
4N)sgn sin@2p(x2xj)/L#, which is constant on both sides o
the particle and has a jump at locationxj1L/2. Calling our
particles electrons, this jump may be interpreted as due
positron at this opposite location. This model, equivalent
the model investigated by Lenard and Prager@25,26#, may
thus be considered as a two-species plasma model on
semicircle of lengthL/2, with boundary condition such tha
when a particle exits at 0 its antiparticle enters atL/2 with
the same velocity~and conversely!. Figure 1 displays the

FIG. 1. Pair interaction forceF(x) for Lenard-Prager plasma
(s85` : full line! and for truncations to first Fourier componen
(s851 : dots,s853 : dashed line!, with q5e051, L52p.
n
-
-
by

a
o

the

field for this interaction and its truncation to the first Fouri
components~finite s rotator models!.

Hamiltonian~1! yields the equations of motion

mẍj5N21(
n51

s8

(
r 51

N

knVnq2 sin kn~xj2xr !. ~3!

The nth-order total field componentSn , its amplitudeSn ,
and its phasefn are defined as

Sn5S N21(
j 51

N

q cosknxj ,N21(
j 51

N

q sin knxj D
5~Sn cosfn ,Sn sin fn! ~4!

with 2p,fn<p. With no loss of generality, lettingm51,
q51, and introducing the new coordinateXi52pxi /L
1p mod(2p), the force in Eq.~3! can be reexpressed as
sum ofs8 terms:

Ẍi52
2p

L (
n51

s8

knVnSn sin~nXi2fn!, ~5!

where bothSn and fn depend on time@cf. Eqs. ~4!#. The
N-body motion thus reduces to a single particle problem
the self-consistent fields (Sn ,fn) with n51,2, . . . ,s8.

Expression~4! implies that the two components ofSn are
proportional to thenth discrete Fourier coefficients of th
spatial distribution. Hence, the time evolution of the colle
tive quantitiesfn(t) andSn(t) will characterize the dynam
ics occurring on spatial scaleL/n. In a previous work@24#
we considered the equilibrium statistical mechanical prop
ties of this model. This system undergoes no phase trans
if all coupling constantsVn are non-negative~i.e., if all cou-
plings act repulsively!. The Gibbs canonical distribution o
fields Sn at temperatureT5^pr

2& for N→` is Gaussian, iso-
tropic, with independent componentsSn having average
square modulus

^Sn
2&5N21

2T

2T1Vn
. ~6!

The equilibrium correlation function, i.e., the density at d
tancey from a test particle, is given by

C~y!5^d~x12x22y!&5
1

L
1

c~y!

N21

5
1

L
1

2

L~N21! (n51

`

Cn cos~kny! ~7!

with Cn5N^uSnu2&2152Vn /(2T1Vn). In the ~Lenard-
Prager! 1D Coulomb case, the equilibrium correlation fun
tion decays exponentially, with the Debye characteris
length

lD5kD
215S Le0T

2q2 D 1/2

5
L

pS T

2K8D
1/2

. ~8!

The nearness of the finite-N system to the ‘‘kinetic limit’’
(N→1`) is measured by the mean number of particles
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57 5349WEAK TURBULENCE AND STRUCTURE EVOLUTION IN . . .
Debye lengthND5NlD /L, or by the grain parameterND
21 .

The physical characteristic time on macroscopic scales is
reciprocal of the plasma pulsation

vpl5kDv th ~9!

and the characteristic velocity isv th5A2H/N. We use these
expressions for the casess,` as well as for the 1D Cou
lomb case to facilitate comparisons. Note thatkD , v th , and
vpl are finite in the limitN→1` if one keeps the mean
energy per particleH/N or temperatureT fixed.

Because the particle interaction is repulsive, the total
tential energy

V5H2K5
N

2 (
n51

s8

VnSn
2 ~10!

is O(N21) times smaller than the total kinetic energy
equilibrium states. Initial conditions may have larger pote
tial energy, but the system relaxes to values ofSn of the
order of Eq.~6!: nonequilibrium situations withSn in such a
range are calledweakly turbulentby analogy with the Cou-
lombian plasma case@27#. Thus the instantaneous rms velo
ity ~or thermal velocity! ^pr

2&1/25(2H/N2(nuSnu2)1/25v th

1O(N21) in such regimes, andvpl5AK8/2.
The purpose of the present paper is to characterize n

equilibrium behaviors of our systems such as relaxation
thermal equilibrium. For the 1D Coulombian~charged
sheets! model, we shall compare the results ofN-body dy-
namics with the more common kinetic theory. For the rota
model (s51), our work is the first investigation of its
weakly turbulent regimes; the low temperature regime
already been considered by Antoni and Ruffo@3#, who ob-
served the formation of clusters in spite of the interparti
repulsion. The high temperature behavior of thes51 rotator
model is also investigated currently with focus on its d
namical instabilities@28#.

III. CODES AND INITIAL CONDITIONS

To integrate Eq.~5! with s finite, we use a second orde
symplectic scheme~leap-frog! @3#, developed in analogy
with the code used successfully for modeling the interact
of N particles withs waves@29#. Since the force on eac
particle depends only on the mean fieldsSn , the algorithm
requiresO(Ns) CPU time instead ofO(N2s). For reason-
able values ofs we can consider values ofN larger than 104.
This numerical scheme is easily vectorized, as one comp
successively the field componentsSn from all particle posi-
tions, and then one advances the particles independent
each other using only their own position and velocity and
instantaneous fields.

From the numerical analysis viewpoint, our truncation
the binary interaction is a particular type of ‘‘mollification
regularizing the dynamics@21,23#. Then, fors,`, the limit
N→` leads to a regular kinetic limit with a unique solutio
for all times to the initial value problem@21,22#.

In the limit s→1`, the particles behave like paralle
charged sheets that cross each other smoothly. Between
crossings, the force on a particle is constant. The dynamic
thus locally integrable in time. To integrate model~1! in this
he
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case, we use an ‘‘exact’’ integration scheme@9,10,30–33,5#
in which the only numerical errors are caused by the trun
tion of real numbers to the machine accuracy. This schem
alsoO(N).

To allow direct comparison with earlier work on kinet
plasma turbulence, we use initial conditions similar to th
considered in Ref.@16#, such as plotted on Fig. 2~a! in the
(x,v) plane ~for N520 000). The~reference! equilibrium
distribution is uniform in space and Maxwellian in velocitie
The dimensionless control parameter for this equilibrium
the ratio of the Debye lengthlD to the system lengthL
52p, or equivalently the ratio of thermal velocityv th to
Lvpl ; we setvpl51 with no loss of generality in our nu
merical experiments. The thermal velocity is given the va
v th52p/10 to fit 10 Debye lengths on the circle~normalized
to 2p).

The initial perturbation is twofold. The velocity distribu
tion @Fig. 2~b!# is a Maxwell distribution from which we
remove all the particles in two narrow symmetric veloc
domains~here 0.03<uv/v thu<0.08). These gaps generate~in
the kinetic approach! turbulence in their neighborhood, lead
ing to the formation of ‘‘hole’’-like coherent structures@16#.

FIG. 2. Typical initial condition withN520 000 particles,lD

5L/10. Spatial density modulated at wavelengthL/9 and Maxwell
velocity distribution function with gaps at 0.03,uv/v thu,0.08. ~a!
(x,v) space plot~one dot per particle!. ~b! Histogram of number of
particles per cell inv space~plot restricted to22,uv/v thu,2). ~c!
Histogram of number of particles per cell inx space.
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5350 57MICKAËL ANTONI, YVES ELSKENS, AND CAROLINE SANDOZ
The spatial distribution of the particles is modulated with
period close to the Debye lengthlD to excite structures simi
larly ~in the plasma context, Debye-scale density modu
tions would be short lived due to Landau damping@34#!.
Figure 2~c! displays the spatial density corresponding to F
2~a!, i.e., n(x)5n01n1 cos(2px/l), with l510lD/9, n0
5N/L, n150.5n0.

Numerical simulations starting from uniform initial spa
tial distributions were also performed.

IV. RELAXATION OF TAGGED PARTICLES
DISTRIBUTION

Let us first estimate the typical time needed bytagged
particles to get mixed among the other particles, start
from an equilibrium distribution. Given an initial Maxwell
ian ~or nearly so! distribution of velocities, and a uniform
spatial density, we distinguish two families of particl
@7,3,5#: the N/2 initially fast particles~IFP! and theN/2 ini-
tially slow particles. These families are well defined rega
less of whether a turbulent structure or a density modula
are present or not. Denote by

K IFP~ t !5
1

K~ t ! (
r PIFP

pr
2

2
, ~11!

the fraction of the total kinetic energyK(t) shared by the
initially fast particles. Its relaxation time measures the ty
cal time needed by a particle to undergo a significant ve
ity variation. As t→1`, K IFP(t) relaxes to 1/2, and when
K IFP(t)'1/2, one can consider that the particles have l
memory of their initial velocity. Initially, we have
K IFP(t)'0.9. Figure 3 displaysK IFP(t) as a function of time
for various numbers of particles for the 1D Coulombian ca
@7#.

The rotator models with finites behave similarly, and we
plot on Fig. 4 the timet r(N,s)/N needed byK IFP(t) to reach
the value 0.8. As our diagnostic is easily applied to noneq
librium initial distributions, Fig. 4 displays not only dat
obtained from a spatially uniform initial condition~circles!
but also data evolved from the initial condition of Fig.
~black markers and crosses!.

Like the time scales of Sec. VI below, the characteris
times obtained here are proportional to the total numbe

FIG. 3. Relaxation of the fraction of kinetic energy shared
initially fast particles vs time, for the 1D Coulombian caseL
52p510lD). Time axis rescaled byNDvpl

21 . Number of particles
per Debye lengthND5N/10520,40,80,160,320.
-
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particlesN. We shall further discuss the reason for this sc
ing in Sec. VI. These results complement results of Re
@32,33#, which made a similar observation for the 1D Co
lombian system.

Thes dependence in Fig. 4 shows that the relaxation ti
scalet r of the velocity distribution function is not sensitiv
to the interaction on spatial scales smaller thanlD . Besides,
the closeness of the time scales for the sames and different
initial conditions implies that the tagged particle relaxati
time does not depend significantly on the presence of tur
lent structures of Debye scale as those observed in the
section.

V. PHASE SPACE DENSITY HOLES

Now we turn to nonequilibrium structures supported
the dynamics. Following kinetic theory arguments for t
Vlasov-Poisson integrodifferential system, Berman, T
treault, and Dupree@16# find that weak plasma turbulenc
generates depletions rather than density excess in (x,v)
space, and their simulations confirm these predictions. H
ever, their simulation method uses particle-in-cell cod
which automatically smooth the distribution functions, a
one is interested here in small scale structures, with a
close to grid mesh scales. In this section we first compare
structures generated by the microscopicN-body dynamics of
the 1D Coulomb system with those obtained from t
Vlasov-Poisson system in (x,v) space. We shall see that th
formal difference between the two models on scales sma
than the Debye scale does not lead to different types of st
tures. Then we compare the Coulomb interaction, with all
Fourier components, to the ‘‘truncated’’ interaction, wi
only the longest-range Fourier component, i.e., to the rota
model with s51. We end this section by considering th
effect of more Fourier components in the interaction.

A. The Coulombian model

Among the diagnostics used by Berman, Tetreault, a
Dupree@16#, (x,v)-space plots provide the most direct ev
dence for (x,v)-space granulations. Figure 5 displays a s
quence of snapshots at various times for the 1D Coulomb
system (s51`) of N520 000 particles. The velocity rang
displayed is limited touv/v thu<0.8 where the structures ac
tually evolve. The density hole observed nearx/lD'21

FIG. 4. Relaxation time of the tagged particles total kinetic e
ergy vs numbers of nonzero coefficients in the potential. Initia
conditions are spatially uniform~open circles,N510 000) and
modulated spatially~black markers forN540 000, crosses forN
510 000).
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FIG. 5. (x,v) space for 1D Coulombian model (s→`, or charged sheets! at successive times, starting from initial condition of Fig.
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moves slowly to the right and appears as a depletion in
space-averaged velocity distribution function.

This hole propagates at a characteristic velocity of
order of 0.1v th , i.e., in the velocity range in which the ve
locity distribution function initially has a steep derivative]v f
~actually f initially has a gap so that]v f 5` formally!, in
agreement with kinetic theoretical predictions@16#.

A second, less visual, but robust, indication for granu
tions is obtained from a statistical test on the relative fl
tuationsd f of the population in (x,v) cells. For an equilib-
rium state, and for large scale perturbations as due
Langmuir modes~or their finite-s analogs!, the number
A(x0 ,v0) of particles in a cell (ux2x0u<Dx/2, uv2v0u
<Dv/2) is a Poisson random variable with expectati
Aeq(x0 ,v0)5 f eq(x0 ,v0)NDxDv. Thus the relative fluctua
tion

d f ~x0 ,v0!5A~x0 ,v0!/Aeq~x0 ,v0!21 ~12!

is a random variable with vanishing expectation in equil
rium states. It is clear thatd f (x0 ,v0)>21 and that
^Aeq(x0 ,v0)d f (x0 ,v0)&50 for any state of the system
Moreover, for an equilibrium state, the distribution of rel
tive fluctuations is expected to be nearly Gaussian@16#.

We divide the rangeuvu<v th in 300 cells with sizesDx
5lD/2 by Dv5v th/15. At equilibrium, there areAeq'50
e

e

-
-

to

-

particles in such a cell, which is large enough to yield s
nificant statistics. We plot in Fig. 6 the distribution ofd f for
these cells at timet5216vpl

21 . This plot has an averag
^d f &520.2 and a standard deviation (^d f 2&2^d f &2)1/2

50.14, indicating that the cells are depleted rather than o
populated.

These diagnostics confirm the formation and evolution
holes in microscopic dynamics of the Coulombian mod
showing that these structures appear in the same mann
in the kinetic plasma model. Correlation functions and bi

FIG. 6. Distribution of relative fluctuations of (x,v)-space den-
sity in range uvu<v th in the presence of hole structure, for 1
Coulomb system of Fig. 5. Ordinates in arbitrary units.
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FIG. 7. (x,v) space for rotator model (s51), starting from initial condition of Fig. 2.
-

f
o
e

la

g.

d-

the

or
thogonal decomposition of the distribution function@5,6#
lead to the same conclusion.

B. The rotator model

For s51 with L52p, equation of motion~5! reduces to
the pendulum equation

ẍr5K8S1 sin~xr2f1!, ~13!

where intensityS1 and phasef1 depend on all particles po
sitions through Eq.~4!. The interaction is ‘‘only long range’’
as the fieldS1 has wavelength 2p on the circle@3#. The time
evolution of a system ofN580 000 particles, starting from
the initial condition of Fig. 2, is similar to the evolution o
the Coulombian system. However, the absence of sh
range components in the force~13! gives a smoother shap
to the density hole as shown on Fig. 7. The (x,v)-space
density relative fluctuations, displayed in Fig. 8, are simi
to those of the previous section.

C. The modulated rotator interaction

For s52 (s853) with coefficients ~2! a system of
N580 000 particles evolves from the initial condition of Fi
2 to the same type of structures as fors51 ands→`. Figure
9 displays an (x,v)-space picture att5250vpl

21 , and Fig. 10
rt-

r

shows the distribution of relative fluctuationsd f . Similar re-
sults @5# were obtained for largers.

The similarity between the structures observed fors51,
s52, and largers is easily explained by the fact that, accor
ing to Eq.~6!, thermal equilibrium values ofSn are close to
each other, so that coefficients~2! imply knVnSn;n21, and
the long-range components are thus dominant in Eq.~5! in
weak turbulence regimes.

VI. RELAXATION OF FIELDS TO EQUILIBRIUM

The weakly turbulent structures of Sec. V characterize
behavior of particles in (x,v) space on ‘‘microscopic’’

FIG. 8. Distribution of relative fluctuations of (x,v)-space den-
sity in rangeuvu<v th in the presence of hole structure, for rotat
system of Fig. 7. Ordinates in arbitrary units.
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57 5353WEAK TURBULENCE AND STRUCTURE EVOLUTION IN . . .
scales. The formation of these structures was triggered
perturbations of the initial distribution of particles, but th
diagnostics of Sec. V were instantaneous. Now we cons
‘‘macroscopic’’ time scales, over which the fieldsSn decay
from nonequilibrium values to values of thermal magnitud

A. Characteristic time scales

As the system dynamics is dominated by the~longest-
range! field S1, i.e., the first Fourier component of the inte
action field, we monitor its evolution to describe the a
proach to weakly turbulent quasistationary behavior, star
from modulated initial conditions. Figure 11 displays a typ
cal evolution~for s52, N580 000) of the amplitudeS1, of
the phasef1 , and of the phase velocitydf1 /dt. The initial
condition is modulated so thatS1(0) is a few times the ther
mal equilibrium value~6!. The amplitude decays regularl
and the phase velocity varies slowly over an interval 0,t
,tv . At time tv , the amplitude reaches the equilibriu
level ~6! and the phase velocity gets dominated by noise

For the same initial condition, with different values ofs
andN, the evolution ofS1 looks similar. Results summarize
in Fig. 12 show that the time scaletv(N,s) is proportional to
N. The dominance of the small-wave-number compone
appears in the fact thattv /N rapidly approaches its
asymptotic value for increasings.

The proportionality oftv to N may be explained for the
plasma case as follows. Increasing the number of particle
the system makes the ‘‘discrete distribution function
f N(x,v,t)5N21( rd„x2xr(t)…d„v2v r(t)… closer to a

FIG. 9. (x,v)-space distribution of particles att5250v21 for
modulated (s52, s853) rotator system, evolved from initial con
dition of Fig. 2. Solid lines indicate the instantaneous separatrix
the resonance associated toS1 of Sec. V B and Sec. VI B.

FIG. 10. Distribution of relative fluctuations of (x,v)-space den-
sity in rangeuvu<v th in the presence of hole structure, for mod
lated (s52, s853) rotator system of Fig. 9. Ordinates in arbitra
units.
by

er

.

-
g

ts

in

smooth distribution function, which evolves following k
netic theory. The factorN21 in the coupling term in Eq.~1!
ensures that the macroscopic time scalevpl

21 ~which governs
hydrodynamiclike behavior of the Langmuir modes! is inde-
pendent ofN, but here we consider microscopic~‘‘molecular
dynamics’’! evolution. In the plasma case, it has been sho
that the distribution function relaxes on a time scale prop
tional to N because ‘‘binary interactions’’ must preserve e
ergy and momentum~hence they cannot modify the distribu
tion function as all particles have equal mass!: the
distribution function can relax only as a result of ‘‘thre
body interactions,’’ for which the coupling isN21 times
weaker than the ‘‘two-body coupling.’’

Our results show that the truncated interaction behave
the same way as the full Coulombian interaction, and that
time scales of the latter are reproduced already with a sm
number of Fourier components.

B. Particle motion and field evolution for s51

Let us now describe the microscopic dynamics underly
the relaxation. We first consider the simple rotator cass
51. Thenk151 with L52p, and V15K8. Equation~13!
shows that any particler moves in a pendulumlike field. We
associate to this motion aforcedHamiltonian dynamics, gen
erated byer :5wr

2/21K8S1 cosyr , where we treatS1 as a
time-dependent external parameter~i.e., we neglect the fac
that particler contributes to the evolution ofS1). Hereyr :

f

FIG. 11. Evolution of~a! amplitudeS1, ~b! phasef1 modulo
2p and~c! phase velocitydf1 /dt from a moderate initial modula-
tion in the rotator system (s52, N580 000).
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5xr2f1 andwr :5pr2ḟ1 are conjugate variables in the co
moving frame of the resonance~obtained fromxr and pr

through a Galileo transformation!. Thus particler may be
trapped or untrapped in the ‘‘resonance’’ generated by
density structure. This resonance is centered onf1, with

instantaneous velocityḟ15df1 /dt, and its half width is
2AK8S1. The bouncing period for trapped particle motion
2p/v trap52p(K8S1)21/2, and the exponential rate of dive
gence of trajectories at the structure’s saddle point
(K8S1)1/2.

The self-consistent relation of the resonance with the h
it traps@15# is sketched in Fig. 13. First note that the dyna
ics of the resonance depends on all particles~contributing
equally toS1 with the same chargeq), but that particles with
velocity neardf1 /dt play a dominant role as they are near
fixed in the resonance frame. Particles moving with resp
to the resonance generate an oscillating contribution that
erages away to first approximation@10#. Thus we discuss
only particles withw'0. If there is a depletion near a pos
tion xh , the repulsive coupling ensures that the resona
will be centered nearxh ~i.e., f1'xh) and the saddle will be
nearxh1L/2(modL). As the particles follow constant en
ergye lines in the (y,w) plane, particles on the boundary o
the hole move on closed, ellipselike orbits surrounding
hole. In the kinetic limit (N→`), with Coulomb interaction
(s→`), such phase space pictures are characteristic of
Bernstein-Greene-Kruskal~BGK! modes of plasmas@38#,

FIG. 12. ~a! Lifetime tv(s,N) of turbulent structure vs numbe
of particles for various values ofs. ~b! Normalized lifetimetv /N vs
numbers of Fourier components in the interaction.
e
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which are exact solutions of the kinetic Vlasov-Poisson s
tem.

However, with a finite number of particles, BGK mode
are perturbed. The slow drift inf1(t), i.e., global motion of
the turbulent structures on the circle, is not a consta
velocity drift. To understand this motion we distinguish th
trapped particles~TP! having energyer,K8S1 from the un-
trapped ones~UP! with er>K8S1. Denote byp̄TP ~p̄UP) the
momentum of~un!trapped particles, which may be averag
over one~approximate! period of the~un!trapped motion.
Then p̄TP5fG 1 as a trapped particle moves on the average
the same velocity as its trapping structure. Also, asS1 is
small, the momentum of an untrapped particle is almost c
stant: only particles wither5O(K8S1) have a motion sensi
tive to the fieldS1, whereas for particles wither@K8S1 the
acceleration due toS1 is averaged off.

Now recall that the fieldS1 is generated by the distribu
tion of particles. Statistical fluctuations induceO(N21/2)
variations inS1(t). Hence, the pendulumlike picture has
time-dependent separatrix sweeping a narrow domain of
O(N21/2) around its average value. These fluctuations m
cause particles to switch between trapped and untrapped
tions. In this process, total momentum is conserved, so t

d

dt (
r PTP

p̄r5
d

dt
~NTPfG 1!52

d

dt (
r PUP

p̄r , ~14!

whereNTP is the number of trapped particles. Equation~14!
shows that the drift velocityfG 1 changes mainly when a
trapped particle becomes untrapped or the converse. Thu
time evolution is due to the small population of particles th
evolve in the domain swept by the separatrix@3#. The change
in the velocity of the particle with respect to the ‘‘reso
nance’’ @35–37# is proportional to the fluctuation ofS1(t),

FIG. 13. Sketch of resonance in (y,w) plane associated to th
effective one-particle reduced Hamiltonianwr

2/21K8S1 cosyr with

L52p, f150, ḟ150. Resonance half-width is 2(K8S1)1/2. Thin
solid line is the instantaneous separatrix~two branches!. Thick solid
line is a typical particle orbit withe.0. Dotted line is a typical
particle orbit near hole boundary. The fieldS1 is generated self-
consistently by a depletion of particles in the center of its resona
~typically inside shaded domain!. The hole is centered on (0,0) wit
characteristic size (Dx,Dv). Compare with Figs. 7 and 9.
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which is O(N21/2). The number of particles in the doma
swept by the fluctuating separatrix (dNTP/dt) scales also
like NN21/2;N1/2.

The global effect of these scalings is that the rate
change of the mean fieldS1(t) on the average scales a
N21/2N21/25N21. This rate of change is indeed the rate
decay of the amplitudeS1(t).

Finally note that the trapping of a particle reducesS1
while a detrapping enhancesS1. Indeed, a trapped particle a
xr'f1 lies in a well generated by particles that repel it,
that particles responsible for the well lie nearf11p. Thus
the particles generating the well are untrapped~they lie near
the saddle of the resonance! and must move a little with
respect to the resonance. The resonance can, however,
sist over a long time~with a small size: in our simulation
S1'1022) because particles near the saddle are slower
particles with the sameer passing near the spatial centerf1.

Let us stress that, as seen on Fig. 9, the resonance
closes a depletion of particles rather than an excess of
ticles. The argument above also explains why the turbu
structures of Sec. V are holes. Indeed, an excess of part
generates locally a saddle point, which repels the parti
and destroys the cluster, whereas a depletion can be fi
only by the~slower! trapping process described. This asy
metry between excess and depletions was already discu
in the plasma kinetic theory of clumps~see Ref.@16# and
references therein!. For the rotator model, neither long-live
density excess nor holes were generated when injectin
beam of particles in the system at velocities at which
remove the ‘‘strips.’’

C. Cases>1

When the structures are present,k1V1S1@knVnSn (n
Þ1), and f1(t) is slowly varying compared tofn(t), 3
<n<s8. Consequently, the components of the force withn
>3 have small average effect and the dynamics is domin
by the first componentS1. However, the presence of th
higher-order modes changes the shape of the ‘‘resonan
As a first approximation, one may estimate that they enla
the domain around the ‘‘moving separatrix’’ in which th
particles get trapped or detrapped. Thus the character
time tv /N must decrease whens increases.

VII. INTERACTION OF HOLES

Finally, we turn to the interactions between (x,v)-space
density holes and their dependence on initial conditio
These phenomena will be illustrated with the rotators
51) model.

We consider initial distributions ofN520 000 particles
with no spatial modulation andL510lD . The velocity dis-
tribution is a Maxwell distribution, from which we remov
two strips u20.025v th<uvu<u10.025v th . The central ve-
locity u takes values 0.15v th and 0.25v th , significantly larger
than the valueu50.055v th used in the previous sections. Th
runs reveal the following qualitatively different evolutions

For u50.15v th , two holes appear in the velocity range
v'6u, with sizes similar to the single hole of Sec. V B
They last untilt'103vpl

21 : at this time, the (x,v)-space den-
sity has reached equilibrium. These holes remain close
f
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each other, forming a dipolelike structure as displayed
Fig. 14~a! at t5400vpl

21 .
For u50.25v th , two holes appear similarly with veloci

ties '6u and with sizes similar to the previous ones. Th
last beyondt52.103vpl

21 . These holes@shown on Fig. 14~b!
at t5800vpl

21] move with respect to each other. In the pr
cess of their formation, smaller holes appear transiently
are absorbed by these two big ones.

Similar processes of hole formation and merging a
known to occur and were observed in the kinetic theory
clumps in plasmas@13,17,39#. Our observations confirm the
dynamical role of the holes in smooth interactions. In p
ticular, we note that initial conditions with a ‘‘missing strip’
in the velocity distribution function tend to generate a hole
the strip velocity. If one starts with two strips, two hole
form, but they merge if their relative velocity is close to the
characteristic width inv. On the contrary, if their relative
velocity is significantly larger than their size inv, they be-
have rather independently@5#.

The resonance description of Sec. VI B explains the
various behaviors. First recall that, if a particle has a la
velocity w relative to a resonance, the force acted by t
resonance on the particle is averaged over a short time s
(L/w). Then, if two holes are present with very differe
phase velocities (dfh1 /dt, dfh2 /dt), one distinguishes
three classes of particles:Nh1 particles with velocity in the
range of ‘‘hole 1’’ ~i.e., with uv2dfh1 /dtu<2AK8Sh1),
similarly Nh2 particles with velocity in the range of ‘‘hole
2’’ ( uv2dfh2 /dtu<2AK8Sh2), and Nb5N2Nh12Nh2
‘‘background’’ particles. In this classification,Sh1 and Sh2
are defined by the sum~4! restricted to the particles with
velocity in their own range~to first approximation!, which
makes the definition of each class of particles self-consist

FIG. 14. (x,v) distribution of N520 000 particles~with L
510lD) in two-hole states at timet. Initial conditions have no
spatial modulation and have a Maxwell distribution with two ga
20.025v th<uvu2u<0.025v th : ~a! u50.15v th , t5400v21; ~b! u
50.25v th , t5800v21.
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Denote by SChir :5(2AK8Sh112AK8Sh2)/udfh2 /dt
2dfh1 /dtu the Chirikov overlap parameter of the res
nances@40#. Then the total fieldS1 rewrites in the formS1
5Sh11Sh21Sb , and the effective Hamiltonian generatin
the motion of a particle takes the paradigmatic tw
resonance form pr

2/21K8Sh1 cos(xr2fh1)1K8Sh2 cos(xr

2fh2), neglectingSb . For the latter Hamiltonian@40#, if the
two resonances do not overlap~i.e., if SChir,1), the particle
motion is rather regular: it is trapped in one of the resonan
or it moves quite freely. But if the two resonances over
(SChir>1), a particle that should be trapped in one of t
resonances moves chaotically from one resonance to
other ~and incidentally our definition of the two classe
‘‘h1’’ and ‘‘h2’’ breaks down!. As the motion of holes is jus
the same as the motion of test particles, this implies t
holes can keep their identities over a significant time sc
only if their relative velocity is large enough@41#.

Practically, the Chirikov resonance overlap parame
may be grossly estimated as follows. The relative phase
locity udfh2 /dt2dfh1 /dtu'2u is checked directly from
the figures. The half-width of each resonance is estima
from the aspect ratio of its hole: the hole has a character
lengthDx ('lD) and a characteristic width in velocityDv
('0.1v th). The ratioDv/Dx is the bounce frequencyv trap at
the bottom of the resonance’s potential well~provided Dx
!L for a period-L cosine potential!, and the resonance hal
width is thus (L/p)Dv/Dx. For the cases displayed on th
figures, v trap'0.1vpl yields the estimates SChir
50.2v th /(2u), which is smaller than 1 for Figs. 14~a! and
14~b!. However, for the initial data withu50.055v th , a simi-
lar estimate would yieldSChir>1, implying that the holes
should merge, as they do indeed.

VIII. CONCLUSIONS

To summarize, given initial conditions out of equilibrium
we have shown that the systems in our family generate
bulent structures analogous to those studied with the kin
plasma models@16#. The existence of these structures a
their lifetime are dominated by spatial scales larger than
Debye lengthlD . The relaxation time to thermal equilib
rium is not strongly affected by the turbulence. This sugge
that the phase space, or (x,v) space, mixing due to the tur
d
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bulent structures may be small. Indeed the dominant proc
for the evolution of the structures is separatrix crossing
(x,v) space, i.e., trapping-detrapping of particles in the re
nance associated with the long wavelength field compon
This process is sensitive to the particle number density:
characteristic time scale is proportional toN ~or to ND
5NlD /L) although the macroscopic time scalevpl is inde-
pendent ofN.

Our results also show that important dynamical proper
of the 1D Coulombian system are well reproduced, ev
quantitatively, by the dynamics of the rotator model~2!,
which is easily simulated numerically by molecular dyna
ics. This validates the use of direct molecular dynamics~pos-
sibly with truncation to Fourier components with scal
larger thanlD , in a kind of spectral code! as an alternative
to kinetic-theory based codes for electrostatic plasma tur
lence, such as classical particle-in-cell codes. Besides,
observation of holes for finites and finiteN shows that their
formation is not related to the ability of the Vlasov-Poiss
system to generate singularities@23#.

This work leaves open several interesting problems. T
first is to discuss similarly the evolution of structures in a
tractive potentials, such as the gravitational one and the
romagneticXY model @42–44,3,12#. The second is the low
temperature dynamics for repulsive models, as long-liv
clusters have been observed in thes51 rotator model@3#.
The third is the interaction of the turbulent structures cons
ered here with large perturbations of hydrodynamic ty
This will be the subject of forthcoming works.
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